Hi Friends and Champs,
Before proceeding to next exercise, let's discuss about some trigonometric identities.
Let ΔABC is a right-angle triangle, right angle at B as given below.
Since Δ ABC is a right angle , therefore
CA2 = AB2 + BC2Since]
divide by CA2 at both sides , we have
CA2/CA2 = AB2/CA2 + BC2/CA2
=>(AB/CA)2 + (BC/CA)2= 1
=>cos2A + sin2A =1 -------(1) ( since cosA = Base / hypotenuse)
and sinA = perpendicular/ hypotenuse)
divide eq (1) by Sin2A , we have
[Cos2A /Sin2A]+ [Sin2A/Sin2A] =[1/Sin2A]
=> cot2A + 1 = cosec2A -------(2)
divide eq (1) by Cos2A , we have
[Cos2A /Cos2A]+ [Sin2A/Cos2A] =[1/Cos2A]
=> 1+ tan2A = sec2A ---------(3)
Exercise 8.3
1. Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Solution:
Since cot2A + 1 = cosec2A
therefore 1 / sin2A = 1 + cot2A , (since cosecA = 1/sinA)
=> sin2A = 1 / (1 + cot2A)
=> sinA = 1/ √(1 + cot2A) Ans.
since 1+ tan2A = sec2A
therefore secA = √(1+ tan2A)
=> secA = √(1+ 1/cot2A) (since tanA = 1 / cotA )
=>secA = cotA / √(1+ cot2A) Ans.
tanA = 1/cotA Ans.
2. Write all the other trigonometric ratios of < A in terms of sec A
sinA = √ ( 1 - cos2A) ( since cos2A + sin2A =1 )
= √ ( 1 - 1/sec2A) ( since cosA = 1/secA )
=secA / √ (sec2A - 1)
cosA = 1/secA
tanA = √ (sec2A - 1)
cosecA = 1/sinA = √ (sec2A - 1) / sec A
( since sinA =secA / √ (sec2A - 1), already proved )
cotA = 1 / tanA = 1/ √ (sec2A - 1)
3. Choose the correct option. Justify your choice.
(i) 9 sec2 A – 9 tan2 A =
(A) 1
(B) 9
(C) 8
(D) 0
Solution:
9sec2A - 9tan2A = 9/cos2A - 9sin2A/cos2A
=9 ( 1 - sin2A ) / cos2A
=9 cos2A / cos2A
=9 option (B) is correct Ans
(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ) =
(A) 0
(B) 1 (C) 2 (D)–1
Solution:
(1 + tan θ + sec θ) (1 + cot θ – cosec θ) =( 1 + sinθ/cosθ + 1/cosθ)(1 + cosθ/sinθ - 1/sinθ)
=(cosθ + sinθ + 1)(sinθ + cosθ -1) / cosθsinθ
=[(cosθ + sinθ)2 - 1] / cosθsinθ
( since (a + b)(a-b) = a2 -b2)
=[cos2θ + sin2θ + 2cosθsinθ - 1] / cosθsinθ
(since (a + b)2 = a2 + 2ab +b2 )
= [1 + 2cosθsinθ - 1] / cosθsinθ
= 2cosθsinθ / cosθsinθ
=2 so option (C) is correct Ans
(iii) (sec A + tan A) (1 – sin A) =
(A) sec A
(B)sin A (C) cosec A (D) cos A
Solution:
(sec A + tan A) (1 – sin A) =( 1/cosA + sinA/cosA )(1 - sinA )
=( 1 + sinA )(1-sinA) / cosA
=(1 - sin2A) / cosA
= cos2A / cosA
=cosA option (D) is correct Ans.
(iv) 1 + tan 2A / 1 + cot2A =
(A) sec2A (B)–1 (C) cot2A (D) tan2A
Solution:
1 + tan 2A / 1 + cot2A = [ 1 + sin2A /cos2A ] / [ 1 + cos2A/ sin2A ]
=[ (cos2A + sin2A) / cos2A ] / [ (sin2A + cos2A) / sin2A ]
=sin2A/cos2A
=tan2A option (D) is correct Ans.
4. Prove the following identities, where the angles involved are acute angles for which the
expressions are defined.
(i) (cosec θ – cot θ)2 = (1 - cosθ) / (1 + cosθ)
LHS = (cosec θ – cot θ)2
= (1/sin θ – cosθ/sinθ )2
= (1 - cosθ)2 / sin2θ
=(1 - cosθ)2 / (1 - cos2θ) (since cos2θ + sin2θ =1)
=(1 - cosθ)2 / (1 + cosθ)(1 - cosθ) (since (a + b)(a-b) = a2 -b2)
=(1 - cosθ) / (1 + cosθ) = RHS Hence proved.
(ii)
cos A / (1 + sin A) + (1+sinA) /cosA = 2secA
LHS = [ cos2A + (1 + sin A)2 ] / (1+sinA) /cosA
= [cos2A + 1 +sin2A + 2sinA ] / (1 + sin A) cosA
= [1 + 1 + 2sinA ] / (1 + sin A) cosA
= 2[1 + sinA ] / (1 + sin A) cosA
= 2 / cosA
= 2 secA = RHS Hence proved
(iii) tan θ / (1 - cot θ) + cot θ /( 1 - tan θ) = 1 + sec θ cosec θ
LHS = tan θ / (1 - cot θ) + cot θ /( 1 - tan θ)
= [ ( sin θ / cos θ) / ( 1 - cos θ/sin θ)] + [(cos θ/sinθ) / ( 1 - sinθ/cosθ]
= [ ( sin θ / cos θ) / {( sin θ - cos θ) /sin θ)}] + [(cos θ/sinθ) / {( cosθ - sinθ)} /cosθ]
= [ ( sin2θ / cos θ( sin θ - cos θ)] + [(cos2θ/sinθ( cosθ - sinθ)]
=[ ( sin2θ / cos θ( sin θ - cos θ)] - [(cos2θ/sinθ( sinθ - cosθ)]
=[ ( sin3θ - cos3θ) / cos θ sin θ( sin θ - cos θ)]
=[( sinθ - cosθ)(( sin2θ + cos2θ + cos θ sin θ)] / cos θ sin θ( sin θ - cos θ)
since a3 - b3 = (a - b)(a2 + b2 + ab)
=( sin2θ + cos2θ + cos θ sin θ) / cos θ sin θ
= ( 1 + cos θ sin θ ) / cos θ sin θ
=sec θ cosec θ + 1 = RHS Hence Proved
(iv) (1 + secA) / sec A = sin2 A / (1 - cosA)
LHS = (1 + secA) / sec A = cos A + 1
RHS = sin2 A / (1 - cosA)
= (1 - cos2 A ) / (1 - cosA)
=(1 + cosA)(1 - cosA) / (1 - cosA)
= (1 + cosA)
Hence LHS = RHS Hence Proved
(v) (cosA - sinA +1)/(cosA+sinA-1) = cosec A + cot A
LHS = [(cosA + (1- sinA )] / [(cosA - (1 - sinA)]
multiply and divide by [(cosA + (1- sinA )]
= [(cosA + (1- sinA)]2 / [cos2A - (1 - sinA)2]
= [(cos2A + (1 - sinA)2 + 2cosA(1-sinA)] / [cos2A - 1 - sin2A + 2sinA]
= [(cos2A + 1 + sin2A -2sinA + 2cosA-2cosAsinA)] / [cos2A - 1 - sin2A + 2sinA)]
= [(1+ 1 -2sinA + 2cosA-2cosAsinA)] / [cos2A - cos2A - sin2A - sin2A + 2sinA)]
since cos2A + sin2A =1
=[2(1-sinA) + 2cosA(1 - sinA)] / [2sinA -2sin2A]
=2(1-sinA)(1 + cosA) / 2sinA(1-sinA)
=(1 + cosA) / sinA
=(1/sinA + cosA/sinA)
=CosecA + cotA = RHS Hence Proved
(vi) √[(1+ sinA) / (1 - sinA) ] = sec A + tan A
LHS = √[(1+ sinA) / (1 - sinA) ]
=√[(1+ sinA)(1+sinA) / (1 - sinA)(1-sinA) ]
multiply and divide by ( 1-sinA)
=√[(1+ sinA)2 / (1 - sin2A) ]
=√[(1+ sinA)2 / cos2A ] since cos2A + sin2A =1
=(1+ sinA) / cosA ]
=SecA+ tanA
= RHS Hence Proved
(vii) [ (sinθ - 2sin3θ) / ( 2cos3θ - cosθ)] = tanθ
LHS =[ (sinθ - 2sin3θ) / ( 2cos3θ - cosθ)]
=[ sinθ(1 - 2sin2θ) / cosθ( 2cos2θ - 1)]
=[ sinθ(cos2θ + sin2θ - 2sin2θ) / cosθ( 2cos2θ - cos2θ - sin2θ)]
since cos2θ + sin2θ = 1
=[ sinθ(cos2θ - sin2θ ) / cosθ( cos2θ - sin2θ)]
=sinθ/cosθ
=tanθ =RHS
Hence Poved
(viii) (sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2A + cot2A
LHS =(sin A + cosec A)2 + (cos A + sec A)2
= (sinA + 1/sinA)2+ (cos A + 1/cosA)2
= {(sin2A + 1) / sinA)}2+ {(cos2A + 1) /cosA)}2
= {(sin4A + 1 + 2sin2A) / sin2A)}+ {(cos4A + 1 + 2cos2A) /cos2A}
= (sin4Acos2A + cos2A + 2sin2Acos2A + cos4Asin2A + sin2A + 2sin2Acos2A) / cos2Asin2A
= [sin2Acos2A (cos2A+ sin2A) +cos2A + sin2A +4sin2Acos2A)] / cos2Asin2A
= [sin2Acos2A + 1 +4sin2Acos2A)] / cos2Asin2A
since cos2A+ sin2A = 1
= [5sin2Acos2A + 1 )] / cos2Asin2A
=[5sin2Acos2A / cos2Asin2A+ 1 / cos2Asin2A)]
=(5 + cosec2Asec2A )
=( 5 + ( cot2A + 1)(1 + tan2A)
since cosec2A = ( cot2A + 1) and sec2A= (1 + tan2A)
=[( 5 + ( cot2A + cot2A tan2A + 1 + tan2A)]
=[( 5 + cot2A + 1 + 1 + tan2A)]
= 7 + cot2A + tan2A
= RHS Hence Proved
(ix) (cosec A – sin A)(sec A – cos A) = 1 / (tanA + cot A)
LHS=(cosec A – sin A)(sec A – cos A)
= ( 1 - sin2A)(1 - cos2A) / sinAcosA
=(1 - cos2A - sin2A + sin2Acos2A) / sinAcosA
=(sin2A - sin2A + sin2Acos2A) / sinAcosA
since 1 - cos2A = sin2A
= sinAcosA
RHS = 1 / (tanA + cot A)
= 1 / (sinA/cosA + cos A/sinA)
=sinAcosA / (sin2A + cos2A)
=sinAcosA
LHS = RHS Hence proved
(x) ( 1 + tan2A) / ( 1 + cot2A) = [(1-tanA)/(1-cotA)]2 = tan2A
LHS =( 1 + sin2A/cos2A) / ( 1 + cos2A/sin2A)
=( cos2A + sin2A)sin2A / (sin2A + cos2A)cos2A
= sin2A / cos2A = tan2A
since sin2A + cos2A = 1
Hence proved
[(1-tanA)/(1-cotA)]2 = [ ( 1 - sinA/cosA) / ( 1 - cosA / sinA)]2
= [ ( cosA - sinA )sinA/ ( sinA - cosA )cosA]2
= [ ( cosA - sinA )sinA/ - ( cosA - sinA )cosA]2
= [ - sinA/cosA]2
= [ - tanA]2
= tan2A
Hence Proved
Comments
Post a Comment